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I. INTRODUCTION

In the theory of approximation by rational functions in the complex
plane C, the following Fusion Lemma of A. Roth plays an important role
(cf. [6; 2, p. 113 ff]; for approximation on Riemann surfaces see [7, 8J):

For every pair oj'dLljoint compact sets K j , K 2 C C there is a constant
rJ. = 'Y.(K j , K 2 ) with the propertv: For arhitrary rational functions r j, r 2 and
any given compact set k c C there is some rational function r with

Ir(z) - r,(z) ~ ex.. sup Ir[(l\') - r 2 (w)1
\\"(= k

for all Z E K j U k, j = I, 2.

In [2, p. 116 J the question has been posed to what extent the assump
tion K j n K 2 = 0 in the Fusion Lemma can be replaced by a weaker
condition.

It has been pointed out by P. M. Gauthier that the Fusion Lemma is not
true for K j n K 2 i= 0 in general. Even for rectangles K[, K 2 the Lemma
becomes false if there is a common edge of K I and K 2' as D. Gaier [3 J has
shown. The statement remains true if k : = K j n K 2 is a finite set and
C\(K j U K 2 ) has only finitely many components (see [3 J).

In this paper we will prove a more general extension of the Fusion
Lemma which guarantees the existence of the desired function r in several
cases in which K j n K 2 is a continuum. Moreover the compact set k can be
chosen arbitrarily, so that k = K j n K 2 is not required.

The result is acornbination of the classical Fusion Lemma [6 J and the
Lemma of Nersesjan [5J (see Section 3). Actually between both there
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seems to be a surprising relation: where in this paper the Fusion Lemma
is improved by using the Lemma of Nersesjan this extended Fusion Lemma
again leads to an improved version of Nersesjan's Lemma wh:ich we will
study in a forthcoming paper. On the other hand the "best-possible" (if
true) version of Nersejan's Lemma (Section 3, Remark 6) would give the
best-possible version of the Fusion Lemma.

2. THE MAIN RESULT

For a set MeC and 0>0 let M,,:= {.::E:C1dist(.::, M):(o} where dist
denotes the Euclidean distance.

DEFINITION. Let A, Be C be compact sets. We say that A is extensible
relative to B iff there is some 00 > °such that for all 0> 0, 0 < 00 there is
a compact set C ( = C(0)) with

(i) (A \B2,d,j u A e C e C'B,
(ii) oCu aBc D(Cu B),

(iii) C\(Cu B) consists only of a finite number of components.

Remark. In Fig. 1 the set K, is extensible relative to K 2 but not In

Fig. 2. In both examples K 2 is extensible relative to K,.

Our main result is the following extension of the Fusion Lemma:

THEOREM. Let K" K 2 e C be compact sets s1!ch that C\(K j u K2 ) has
(1.-nly finitely !!iany components and aSSU!!le that K, is extensible relative to
K2 , or that K2 is extensible relative to KI' Then there exists some constant
1. = a( K I , K 2 ) such that {or arbitrary rational functions r" r2 and any

FIGURE 1
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FICilR!' 2

l

there is some rational ltlflction l' lI'ith
r2(1I')IIH'Eku(K,nK2)} for all zEKiuk,

given compact set k c C
Ir(z) -1)z)1 ~ 'l.' sup; 11'1(11')
j=l,2.

We shall give the proof in Section 4. Note that the assuJ1"'ption that
C\JK, u K 2 ) consists only of finitely many components could be made in
the classical Fusion Lemma without any loss of generality by suitable
enlargement of K 1 and K2 •

3. REMARKS ABOUT THE LEMMA OF NERSESJAN

The following Lemma is due to Nersesjan ([5], cf. [2, p. 143]). The role
it plays in tangential approximation is similar to that played by the Fusion
Lemma in uniform approximation.

LEMMA. Let FcC he a compact set and suppose that C\F is the union
of only afinite numher of components. Given an open set G c F with aG c elF
(i.e., G is a union of components o{ F) and D> 0 there is a rational function
R with

(a) IR(z)1 < f;for z E G\(iiG),

(b) IR(z)~ 11 <Dfor EF\G,

(c) IR(z)1 < c for z E F, II'here c is an ahsolute constant.

Remark 1. It is known that the Lemma is true with c 1 (see [L
Lemma 0-1 ] ).

Remark 2. The estimate (c) together with c = 1 can be replaced by

(c') IR(z)-~I<~forzEF
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which seems more natural and follows from considering (p R with
<p(':) (1/2)( 1+ (.: + x)/(.:x + 1)), x 1+6, () > 0 small.

Remark 3. Suppose that G is extensible relative to H := F\C;. Then we
see from the definition given in the preceding section that for all 6> 0
sufficiently small we can apply the Lemma with c; = N2 to the sets Ie = (~( 6/2)
instead of G and C u F instead of F.

For the resulting rational function R we then obtain

(a ' ) IR(.:)I <6 for ':EG\(lGnt'W),\,

(b') IR(.:) - 11 < 6 for.: E H\(DG n (~H),\,

together with (c') as above.
Note that (a'), (b') are estimates of the same type whereas (a) and (b)

are not.

Remark 4. Suppose again that G is extensible relative to H:
and let for some small b > 0 a rational function R as above be taken. It
follows that if Dc F\F is a fixed set and G:= Gu D, then there is a con
tinuous function R with R= Ron FSo that (a'), (h'), (c') are satisfied with

R, G, and F! = F\G instead of R, G, and H. From the assumption that e\F
has only finitely many components we see from a well known theorem of
Mergelyan ([4], cf. [2, p. 110]) that R can be approximated uniformly on
F by rational functions. Therefore we can claim the estimates (a'), (b' ), (c')
also in the case that G is a subset of F with ac c DF, but G not necessarily
open, and we note that for this it suffices that Gbe extensible relative to

F\G.

Remark 5. Now suppose that G c F, ac c (IF, and let Gbe extensible

relative to F\G. As remarked above we can find a rational function R J

which fulfills (a'), (b'), (c') for the sets G, F, H=F\G.
Let a finite number of points ':1, ...,.:"EG\(DGn(lH), WI'"'' WNEF\G

together with a collection of natural numbers \' 1"'" I'll' 11 J' ... , 11.''1 be given.
We will prove that if (c') is replaced by

(e") IR(.:)-~I<~+b

we can find a rational function R which fulfills (a'), (b'), (eN) and III

addition R(':i) = 0, R(w,,) = I (j= 1, ... , n; h = 1, .." N) with multiplicity at
least I'i at Zi and 11" at w".

To obtain this we start with

11

R 2(.:):= n (RI(.:)-R'(':i))",
i J
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Because (c') holds lor R I it follows that

for:: E F

for some ;. > °depending on the bound 6 in (a'), (b').
Now let <j?(w) = (1/2) - (1/2)((11'- 1+ A)/(1 - n· (11'-1)) (111'1 < I) and

(::EF).

Then we have R3(zj)=A/2(j=I, ... ,n) and we may assume
IR 3(w h )-11 <A (h= 1, ..., N).

From the construction we obtain IR,(::) - 1/21 < 1/2 for all :: E F
Let

A short calculation gives the estimate

(::EF)

for ;. sufficiently smalL Similar as above we take a suitable linear transfor
mation ljJ which maps{ III' - 11 < 1} on {I ~ - 1/2 - 151 < 1/2 + 6} and fulfills
ljJ(O) = 0, ljJ(1) = 1. Then the function R = ljJ R 4 has the desired properties
for all parameters small enough.

Remark 6. It seems to be an open question if a stronger version of the
Lemma of Nersesjan still is true where (a) is replaced by

(a") IR(z)1 < f, for Z E G\(F\G),.

If such is the case the assumption of relative extensibility in our theorem
above could be replaced by the weaker condition oK l U oK2 c a(K l U K2 )·

4. A PROOF OF THE EXTENDED FUSION LEMMA

Let K l , K 2 be compact sets and assume without loss of generality that
K1 is extensible relative to K2 • Let a further compact set k and rational
functions r l, r 2 be given. Note that the conclusion holds trivially if r I - r 2

has a pole on k u (K l rI K2 ). Therefore we may assume that

6:= sup{lr l (w)-r 2(w)1 IWEku(K l rlK2 )}<x. (*)

It is sufficient to give the proof in the case r2 =0 (cf. [2,p.114]).
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From Remark 5 above we obtain a rational function R which has zeros
at the poles of 1'1 - r2 (=rl) lying in K 1 and takes the value 1 at the poles
of r 1 in K2 •

We will assume that in both cases the order of R is at least the order of
the pole of r l at these points. From (a ' ), (b'), (c"), and (*) we conclude
that the following estimates can be established:

(l) IR(z)·r](z)I:S;2£5 (.:::EKd

(II) I(R(z)-I)r l (z)I:S;2() (::EK2 ).

Take a neighborhood V of K 1 v K 2 such that there are no poles of R in V.
There is some <:&'l-function H: (R2 -> C with compact support T and which
agrees with R on V (cf. [2, p. 107J). We may assume that the boundary of
both V and T consists of a finite number of Jordan curves.

For fixed let ( = z + rei'!' and by ()H we understand the derivative of H
with respect to (. Then the following estimate for the area integral can
easily be established (polar coordinates):

r-r

"I -:S; sup IcHI . -. 2n diam( T\V) <: a
n

(**)

for a suitable constant a depending on K I' K) only. From (*) we can
obtain an open and bounded neighborhood U of k with Irdz)1 < 2£5 for
z E U.

By the Tietze extension theorem we find some continuous function
q:(\(cV\U)->( with qlVvU==.rll VvU and q has compact support
T , c C Moreover we may assume

(III) Iq(::)1 <2,5 for ::E(\V.

Let E: = (Tn T 1)\ v. We may assume that the boundary is a finite union
of Jordan curves. As in the proof of the classical Fusion Lemma we now
define

g(z) : =
n

= I If q(O" db
n: l:' (,

for Z E C Note that g is holomorphic on C\E.
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f:= -H·q+;;

is meromorphic on a neighborhood of K I U K 2 . From the well-known
Pompeiu formula (cf. [2, p. 94]) we conclude

for all z E iC with q(Z) =1= x. Therefore f is holomorphic in U. Now by
Runge's Theorem we find (cf. [2, p. 116]) a rational function r with

Ir( z) - r d z ) - f( z )I :;; 6

For r we obtain the following estimates:

I. For zEK I we have

Ir(z) - rl(z)l:;; 6 + If(z)1

:;; is + IH(z) q(z)1 + Ig(z)1

= c5 + IR(z) rl(z)1 + Ig(z)1

:;; c5 + 26 + 2c5a (by (I), (Ill), (* * ) )

= (3 + 2a) 6.

2. If z E K 2 we conclude

Ir(z)-r 2(z)1 = Ir(z)1 :;;()+ Irl(z)+f(z)1

= c5 + Ir](z) - R(z) rl(z) + g(z)1

:;; 6 + I(R(z ) - 1) . r] (z )I + Ig( z )I

:;; is + 2c5 + 2()u (by (II), (Ill), (**))

= (3 + 2a) ().

3. For zEk we get with h:= Max~E IH(z)1

:;; () + h . () + 2()a

= (1+ h + 2a ) ()

(by (*), (Ill), (**))
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11'('::) - 1'2(.::)1::;; 11'('::) - rd.::)1 + Ird.::)1

::;;(2+h+2a)b.
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With Y. : = Max {3 + 2a, 2 + h + 2a] we obtain the desired result.

Remark. In the special case k = K 1 n K 2 we can give a short proof for
the theorem. Again we assume that K1 is extensible relative to K2 . We take
the rational function R as in the proof above. Let 1':= (1'2-1'1) R+r l

where the poles of 1'1 - 1'2 coincide with value 0 (in K 1 ) respectively I (in
K2 ) of R as above. In analogy to (I) and (II) we get the estimates

and

so that the conclusion holds with Y. = 4.
Finally we note that in the example sketched in Fig. 2 the extended

Fusion Lemma still holds although K 1 is not extensible relative to K 2 , but
K2 is extensible relative to K 1 •
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